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Abstmct---Confidential computing technologies, such as tbat 
enabled by Intel SGX (Software Guard eXtensions), have been 
widely deployed in various commercial cloud platforms .  Specifi­
cally, SGX uses hardware-isolated compartments named enclaves 
to shield user applications from Operating Systems (OSes) 
and hypervison, thus providing confidentiality and integrity 
guarantees for code and data. However, some crucial problems 
are not fuUy analyzed yet, especially for the compatlbllity with 
binary applications. This work first delivers an overview of Intel 
SGX and reviews its five design constraints tbat may affect 
compatibility. Subsequently, we revisit three distinct compatibility 
solutions from the internals and analyze their impact on security, 
performance, and flexl.bllity. At last, we lay out some fundamental 
lessons learned from prior SGX studies. 

lndu Thnm-TEEs, Intel SGX enclaves, compatibility ap­
proaches, confidential computing, design constraints 

I. INTRODUCTION 

Confidential computing can leverage hardware-based 
Trusted Execution Environments (TEEs) to protect users' sen­
sitive data and code. Unlike traditional encryption protection 
for both data at rest and in transit, TEEs are primarily used to 
protect data in use [1-4]. A prominent example is Intel SGX, 
which introduces a specialized hardware security extension to 
enable an isolated execution environment called enclave. SGX 
is able to offer guarantees of confidentiality and integrity of 
enclave-bounded data and code [5-8]. The original design 
of SGX provides a strong security threat model, where it 
distrusts cloud service providers, third-party services, system 
administrators, and other individuals who have access to the 
physical machine. Instead, it only trusts the Intel CPU's SGX 
implementation and the user's own program code. Compared 
to the traditional OS, the attack surface has been significantly 
reduced in the SGX trust model. As a relatively mature 
commercial product, SGX technology has been deployed in 
some cloud servers, such as Microsoft Azure [2] and Al­
ibaba Cloud ECS [4]. Security-sensitive scenarios shielded by 
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SGX include finance, healthcare, intellectual property, multi­
party confidential data sharing, confidential machine learning, 
blockchain, and so on. 

Although Intel SGX provides powerful hardware-level se­
curity protection for data in use, some constraints imposed 
by SGX design result in varying degrees of impact on the 
compatibility with unmodified applications. The specific issues 
can be summarized as follows: (1) Binary compatibility: due 
to the design constraints of Intel SGX, most SGX runtime 
frameworks [9-21], particularly including the official Intel 
SGX SDK, only provide source-level compatibility rather 
than binary-level compatibility. This leads to problems in 
usability and compatibility between SGX and unmodified or 
legacy applications, which is an open issue in SGX-enforced 
confidential computing. (2) Language runtime compatibility: 
since SGX only supports applications compiled with C/C++ 
by default, language runtimes (e.g., Python and R) cannot run 
directly in the SGX enclave. The compatibility between the 
language runtime and SGX enclave has become an indepen­
dent research focus, as indicated by prior studies [22-25]. 

This paper first reviews five important design constraints of 
Intel SGX and systematically analyzes the compatibility im­
pacts caused by each constraint. Then, it provides an overview 
of existing SGX compatibility solutions and discusses their 
advantages and disadvantages. Finally, it concludes with some 
empirical lessons from Intel SGX studies. 

II. OVERVIEW OF INTEL SGX 

Intel SGX [5-8] is a security extension of Intel CPU 
architecture, which introduces a set of new instruction codes 
and memory isolation mechanisms for protection of data in 
use. SGX allows userland applications to create a protected 
area in an isolated address space, known as an enclave. 
In this enclave, both user code and data are offered for 
guarantees of confidentiality and integrity, effectively prevent­
ing malicious privileged software from tampering with them. 
The implementation of SGX requires coordination among the 
processor, memory management components, BIOS, drivers, 
runtime software, and other software and hardware compo­
nents. Each enclave memory region, also called Processor 
Reserved Memory (PRM), is a contiguous physical memory 
block pre-reserved from the entire Dynamic Random Access 
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Memory (DRAM). I� size is typically configurable through 
the BIOS (e.g., a default size of 128MB). 

In the trust model of Intel SGX, only the SGX hardware and 
enclave software are considered trusted. All other software, 
including privileged software such as the OS, is considered 
untrusted. Enclave software may rely on services provided 
by non-enclave software, such as system calls and signal 
handling. SGX hardware provides two interfaces, synchronous 
and asynchronous, for switching between the OS and the 
enclave. In addition, SGX hardware restricts access to en­
clave memory (i.e., private memory) from untrusted software. 
However, enclave software can read from or write to memory 
regions outside the enclave boundary (i.e., public memory). 

Intel SGX SDK officially provides a set of function calls for 
SGX applications through ecalls and ocalls. Specifically, the 
ecall is used to enter an enclave and invoke trusted functions, 
while the ocall is used to exit the enclave and invoke untrusted 
functions [6]. Therefore, a user application is able to call a 
ecall to execute code in the enclave and receive the return 
values. Likewise, the enclave can invoke a ocall to exit the 
enclave to use functions/services in the host process. 

Ill. SGX DESIGN CONSTRAINTS AND THE IMPACTS 

SGX offers confidentiality and integrity protection for code 
and data in the enclave. All enclave memory is private and 
can only be accessed when executing in enclave mode. Data 
exchanged with the external world (e.g., the host application 
or the OS) must reside in unprotected public memory since 
external programs cannot access the enclave's private memory. 
During runtime, execution control can only synchronously 
enter the enclave through ecalls and exit the enclave through 
ocalls. The two interfaces are the primary means of imple­
menting system calls (syscalls). Any exception in the enclave 
results in asynchronous entry-exit points, after which SGX 
relocates the current control flow to pre-defined points in the 
program. Additionally, if enclave execution is asynchronously 
interrupted, SGX saves the enclave execution context and 
restores it at a later entry point [5, 6]. 

A. Design constraints 

Intel SGX enforces strict isolation strategies at certain 
interaction points between the OS and the enclave code to 
ensure enclave security. This subsection recalls five constraints 
(ClrvC5) imposed by SGX hardware design [15] in Table I. 

B. Impacts on (in)compatibility 

The aforementioned constraints are an important basis for 
understanding the incompatibility between SGX enclaves and 
the functionalities of untrusted software. The ct ...... c5 affect 
SGXl-based runtime frameworks [6, 7] while ClrvC4 also 
apply to the latest version of SGX2. The C2 is relaxed much 
as Intel introduces a new dynamic memory allocation feature 
in SGX2, but this feature cannot address other constraints. 

Ct. Spatial partitioning. Cl ensures that any data located 
in the enclave's private memory, such as syscall parameters, 
cannot be accessed by the OS or host processes. To do this, the 

enclave explicitly manages copies of data in both public and 
private memory to enable external access while protecting it 
from malicious modifications. This operation is called a two­

copy mechanism [15]. However, Cl disrupts functionalities 
such as syscalls, signal handling, futex for locking, and intro­
duces non-transparency issues (e.g., synchronizing two data 
copies) and security risks (e.g., TOCTOU attacks [26]). 

C2. Static partitioning. Applications may require dynamic 
adjustments to the size or permissions of enclave memory. 
These operations happen when dynamically loading library 
files (e.g., dlopen) or data files (e.g., mmap), executing dy­
namically generated code, creating a read-only all-zero data 
segment (e.g., bss), or implementing software-based isolation 
protection. However, constraint C2 is highly incompatible with 
these functionalities. To maintain compatibility with C2, appli­
cations need to carefully modify the corresponding semantics. 
This may involve weakening security protection (shifting from 
read or execute to read and execute), adopting a two-copy 
mechanism, or relying on alternative forms of isolation (e.g., 
software instrumentation). 

C3. Non-shared enclave memory. SGX lacks a mechanism 
for sharing private memory across enclaves. This limitation 
poses compatibility issues with synchronization primitives, 
such as locks and shared memory, especially in cases where 
there is no trusted OS to facilitate synchronization. Maintain­
ing two copies of shared locks may disrupt their intended 
semantics and create a challenge in synchronizing the data 
state between the two copies without relying on another trusted 
synchronization primitive. 

C4. One-to-one enclave memory mapping. When an ap­
plication needs to create a new virtual address mapping, such 
as using malloc, the OS assists in establishing the mapping. 
Typically, an application can ask the OS to map the same 
physical page to several different virtual addresses with either 
same or varying permissions. For example, within a process's 
memory space, the same file can be mapped at two different 
locations as read-only. However, on SGX, a single PA cannot 
be mapped to multiple enclave VAs. Any attempt to do so will 
trigger an exception of SGX memory protection. 

CS. Fixed enclave entry point. SGX enforces that enclave 
entry and resumption only occur from pre-specified and stati­
cally identifiable entry points, which are determined at compile 
time. However, in unmodified enclave applications, unexpected 
entry points may occur in the event of exception instructions 
or illegal memory accesses. When re-entering the enclave, 
SGX requires that the program's execution context matches 
that at the time of exit This differs from typical program 
behavior, where programs can be resumed in a signal handler 
with correct execution context set up by the OS. In the context 
of SGX enclaves, however, the program must be resumed at 
the exact instruction with the same enclave context where it 
exited. Otherwise, another exception is triggered. 

IV. COMPATIBILITY APPROACHES FOR SGX ENCLAVES 

In the aforementioned section, the five design constraints 
outlined affect the compatibility or usability of SGX enclaves. 
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TABLE I 
CONSTRAINTS IMPOSED BY SGX DESIGN 

DesigD constraint 
C 1 Spatial partitioning 

Description . 
SGX reserves a dedicated memory region as private for the enclave and the rest as public. 
Enclave must statically specify the spatial partitioning. C2 Static partitioning 

C3 Non-shared enclave memory An enclave has no support to share private memory across enclaves. 
C4 One-to-one enclave memory mapping 
C5 Fixed enclave entry point 

The virtual addresses (VA) for enclaves is mapped one-to-one with the physical address (PA). 
An enclave is allowed to resume execution only from its last exit point. 

•............................• .............................. 

(a) (b) 

Fig. 1. Compatibility approaches for SGX enclaves. (a) Library OS-based 
design; (b) Library wrapper-based design 

That means binary applications cannot be executed directly 
inside the enclave without modification or recompilation to 
the source code or binary file. To address the compatibility 
issue, researchers have proposed some approaches for run­
ning (unmodified or partially modified) applications within 
SGX enclaves. Among them, a prominent way is to have 
the application use prescribed program-level interfaces or 
APis. The choice of interfaces varies, including specific pro­
gramming languages [22-25], container interfaces [17], and 
specific implementations of standard libc interfaces [16, 18], 
among others. Figure 1 & 2 show three compatibility ap­
proaches, including library OS-based, library wrapper-based, 
and instruction wrapper-based. Although these approaches can 
enhance compatibility between SGX and applications, they 
may cause performance and security concerns. Next, we will 
discuss these compatibility-enhancing strategies individually 
and analyze their advantages and disadvantages, as well as 
their impact on performance, flexibility, and security. 

A. Library OS-based Approach 

The Library Operating System (i.e., libOS or library OS) 
is a special library that emulates the OS features and API 
interfaces relied upon by an application process. By porting 
the entire library OS into the enclave, application binaries can 
be executed directly in the same enclave. Since the binary 
program depends on the library OS completely, developers 
require relinking against specific versions of libraries (e.g., 
musl, libc, glibc). Then, the linked files are loaded into the 
enclave and run. The implementation of library OS includes 
rich functionalities such as those in a traditional OS, thus 

avoiding enclave applications frequently entering and exiting 
for the OS services. Frameworks of such library OS-based 
design include Haven [21], Graphene-SGX [16], and SGX­
LKL [27]. 

Although, in this design (see Figure l(a)), the library OS 
provides a user-space implementation for the majority of func­
tionalities originally offered by the OS kernel, some privileged 
operations still need to be executed in the supervisor mode. 
For instance, both enforcement of protection and isolation 
to application code and page table switching are privileged 
operations. Thus, the library OS requires a small privileged 
software layer to help implement these operations. Since 
the library OS incorporates most of the functionalities of a 
traditional OS (e.g., file systems and network management), 
the interface between the library OS and the software layer 
is usually smaller than the system call layer exposed between 
the OS and the application. For example, the Graphene-SGX 
interface includes 38 different operations while Haven includes 
only 24. When the library OS wants to execute certain special 
instructions/operations, such as cpuid or getsec, it transfers 
control flow to the privileged software layer to exit the enclave 
and complete these operations with the assistance of the OS. 

Advantages. The main advantage of the library OS-based 
approach is a simpler OS-enclave interaction interface. This 
is primarily attributed to the fact that the library OS itself 
implements numerous functionalities of a conventional OS, 
greatly simplifying the enclave interface. For example, the 
library OS may implement a significant portion of the file 
system in the enclave, allowing fine-grained control over read 
and write operations when the control flow reaches the enclave 
interface. For many system calls (e.g., fcntl), which require 
interaction between user space and kernel space in a traditional 
OS, the library OS running in the enclave does not require 
cross-boundary operations or even touch the enclave interface. 
These system calls can simply be mapped to read, write, 
and modification operations on the file system-related data 
structures in the library OS. The function calls also do not 
modify any security-sensitive states of other applications and 
do not require assistance from privileged system software. 

The library OS-based approach has a small OS-enclave 
interaction interface and gains better performance and 
compatibility, because the library OS in the enclave in­
corporates the majority of functionalities of a traditional 
OS relied on by any applications. 

Disadvantages. An important drawback of this approach is 
that the entire library OS needs to run in a single enclave. 
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This means that the Trusted Computing Base (TCB) becomes 
significantly large. For example, the TCB of Graphene-SGX 
can be as high as "' 1.2MB. Consequently, the attack surface 
of the entire enclave also increases, providing attackers with 
more opportunities to exploit and compromise the isolated 
execution environment. One typical example is a buffer over­
flow vulnerability in the library OS, which can be leveraged 
to launch code-reuse attacks. Lack of flexibility is also one 
of the main drawbacks of the library OS-based approach. As 
mentioned in the literature of library OS-based prototypes, the 
entire application runs in the enclave. However, application 
developers likely put only a portion of the security-sensitive 
code in the enclave, rather than the entire program code. 

Another drawback is the need for complex engineering 
efforts. Different enclave processes may need to communicate 
with each other, which involves multiple layers of commu­
nication mechanisms across library OSes. This design makes 
communication between enclaves more complicated. When­
ever there is inter-enclave communication, the transmitted data 
needs to pass through the software layer of each library OS to 
be processed. Since the two enclaves do not trust each other, 
they cannot perform related operations as applications running 
in the same library OS (meaning in the same enclave). 

The library OS-based approach introduces a large TCB size 
that likely reduces the trustworthiness guaranteed by SGX 
hardware. Meanwhile, this design incurs high complexity 
and low flexibility. 

B. Library Wrapper-based Approach 

The representative work of the library wrapper-based ap­
proach, such as Panoply [19], assumes that applications invoke 
system services through library functions (e.g., the standard 
C library or libc), as shown in Figure 1(b). 'JYpically, these 
library files contain low-level system call functions and other 
sensitive instruction operations that cannot be executed in the 
enclave. Panoply provides a library wrapper-based interface, 
allowing enclave applications to link against them. The type of 
wrapper interface ensures that the library code is called from 
outside the enclave, and the enclave interface is standard C 

library functions. 
Currently, Panoply is the only runtime system that utilizes 

the library wrapper-based approach. In contrast to the library 
OS-based approach, this design implements a set of exit 

interfaces from the enclave, but adds few functionalities inside 
the enclave. In Panoply, standard C library functions are 
executed outside the enclave, and it provides a library wrapper­
based interface with which the enclaved application needs to 
be linked. These wrapper functions wrap the data and transfer 
it to the corresponding library function outside the enclave. 

Advantages. Since the library function wrappers in the 
enclave perform few operations for marshaling/unmarshaling 
data, it effectively reduces the TCB of the enclave system. 
Application developers can flexibly decide which security­
sensitive functions to be executed in the enclave. The task 
of partitioning the application involves executing all enclave 

code as a separate module and implementing inter-function 
calls through cross-module execution. Creating the enclave 
code for applications is straightforward, as it only requires 
linking the function modules into the Panoply library function 
wrappers. 

The library wrapper-based approach involves a quite small 
TCB size, which prioritizes security over binary compati­
bility. Meanwhile, this design brings high flexibility. 

Disadvantages. The most obvious drawback of the library 
wrapping approach is that the library function code executed 
outside the enclave is untrusted and can be exploited by 
attackers to compromise the confidentiality and integrity of the 
enclave application (i.e., Iago-like attacks). Due to the large 
and complex library wrapper interfaces, defending against 
such attacks is difficult. 

The standard C library contains thousands of function 
interfaces and some non-standard data structures, which may 
continuously vary (e.g., increase, modify, or delete). It is 
found that some APis or data structures have been added 
or removed in different versions of libraries [28]. Therefore, 
SGX frameworks based on the library wrapper-based approach 
(e.g., Panoply) need huge engineering efforts for adaptation to 
different versions of library files. 

In addition to the large wrapper interfaces, the Panoply 
system also requires modifications to the target application 
code to ensure that the corresponding function wrappers are 
executed correctly. In other words, the application's calls to 
functions in the library file must be adapted to call into the 
Panoply library file. According to the statistical data by the 
Panoply authors, approximately 1000 lines of code need to be 
modified for the test applications mentioned in the paper. 

The library wrapper-based approach contains large and 
complex library wrapper interfaces, which could potentially 
be exploited to launch lago-like attacks. Further, this design 
involves huge porting efforts and manual modifications to 
application source codes, making it less compatible with 
SGX enclaves. 

C. Instruction Wrapper-based Approach 

The main purpose of the instruction wrapper-based approach 
is to provide wrapper functions for low-level instructions that 

are prohibited from execution in the enclave, such as cpuid, 

rdtsc, syscall, etc. These wrapper structures contain security 
rules that cross the enclave boundary to ensure the security 
of data. This approach can provide encryption services when 
data leaves the enclave, and perform decryption operations 
when entering the enclave. In this design, the enclave interface 
is a set of instruction wrapper-based interfaces used to inter­
cept special instructions prohibited by SGX. It then transfers 
control and corresponding parameters to the outside of the 
enclave for further handling. SCONE [17] is an SGX runtime 

framework based on this approach, and Ratel [15] is another 
example where all the instructions of an application binary can 
be interposed in the enclave. 
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Fig. 2. Two types of instruction wrapper-based design 

The instruction wrapper-based approach provides finer­
grained control over the enclave interface compared to the 
library OS-based and library wrapper-based approaches. Fig­
ure 2 illustrates two different design choices. In essence, not 
only can this approach intercept special instructions, but it can 
transparently monitor every instruction of the target program, 
such as Ratel (as shown in Figure 2(b)), to perform security 
checks, dynamic translation, profiling, etc. Compared to the 
library wrapper-based approach, the instruction wrapper-based 
occurs at a lower level of abstraction layer and is closer to the 
enclave boundary, such as operations on register parameters 
and enclave memory. 

Advantages. Theoretically, the instruction wrapper-based 
approach can support the execution of arbitrary binary pro­
grams inside SGX enclaves by replacing the instruction in­
vocation for out-enclave services with specified instruction 
wrapper-based interfaces. Implementing wrapper interfaces 
(e.g., wrapping instructions instead of giving a library call 
interfaces) at a lower level means that these wrapper interfaces 
work on a more stable interface. For example, the syscall 
instruction is commonly used to implement various system 
calls, and every instruction wrapper interface varies depending 
on syscall parameters and types. Research [28] has demon­
strated that the Linux system call interface is more stable and 
undergoes fewer changes across different kernel versions than 
the glibc interface. 

The instruction wrapper-based approach can offer higher 
compatibility and low-level control capabilities. This design 
brings high flexibility for implementing various in-line 
security monitors for security, profilers for performance, 
and other functionalities. 

In this approach, the standard C library files that an applica­
tion relies on run inside the enclave, while they run outside the 
enclave in the library wrapper-based approach. Therefore, the 
TCB of the former is larger and heavier than that of the latter. 
In addition, a thin layer of security checking programs can 
be flexibly added to prevent !ago-like attacks from malicious 
manipulation. In comparison, this approach requires little or 
no intrusive modifications to the application, making it easily 

adapt to SGX hardware enclaves. Importantly, controlling over 
the target binary is easy to achieve, which can be used for 
security introspection, monitoring, optimization, and so on. 

Disadvantages. The primary overhead of the instruction 
wrapper-based approach is the TCB, which is larger than 
Panoply but much smaller than the library OS-based approach. 
Additionally, the application may need to relink against new 
instruction wrapper-based library files, such as those made 
by SCONE (see Figure 2(a)). Ratel provides an instruction­
level dynamic translation engine in the enclave, which can 
dynamically translate and execute every instruction of the 
application binary. It replaces all instructions that are illegal 
in SGX with an appropriate external call, which is handled 
outside the enclave. Once done, it re-enters the enclave to 
continue execution. During this process, Ratel does not require 
dynamic or static link with any library files and enables the 
unmodified application to run directly in the enclave. 

The instruction wrapper-based approach contains a rela­
tively large TCB size. It may cause non-ignorable perfor­
mance overhead, because frequently fine-grained control 
over the instruction of target binary requires plenty of extra 
handling. 

V. KEY LESSONS LEARNED FROM SGX STUDIES 

We have learned several valuable lessons from studies 
of Intel SGX, which involve aspects of performance and 
compatibility/usability. 

Shared enclave memory. As described in Section II, Intel 
CPUs protect enclave memory from being accessed by all non­
enclave software (e.g., the OS, hypervisor) that are restricted 
to only non-enclave memory regions. Enclave private memory 
is even not allowed to be shared with other enclaves. This 
memory isolation model enables strong security guarantees 
for each SGX enclave. This is why Intel SGX does not 
support shared memory by design across enclave boundaries. 
To initialize an enclave, for example, system software re­
quires copying data from non-EPC pages to EPC pages to 
load the target application into the newly created enclave. 
Unfortunately, due to the lack of shared memory between 
the enclave and non-enclave, this operation incurs significant 
performance overhead. Another issue is that the OS- or host­
enclave interactions (e.g., read/write syscalls) involve shallow 
or deep copies across enclave boundaries to exchange the 
data of syscall parameters, thus causing additional overhead. 
Furthermore, the absence of shared memory in SGX also leads 
to sweeping incompatibility with legacy applications. 

Spatial isolation model. The core idea behind Intel SGX 
is to provide spatial memory isolation for enclaves from 
the external world and other enclaves. Memory can either 
be public or private, not both, on SGX-enabled systems. 
From a security perspective, this design works well, but it is 
inadequate for the program's expressiveness or usability. The 
next generation of TEEs should offer flexibility to a program 
where it can choose among strong security guarantees, better 
performance, and rich expressiveness (or better compatibility). 
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For example, programs should be allowed to convert private 
enclave pages to non-private ones on demand. Current SGX 
implementations do not permit such operations throughout the 
lifecycle of an enclave. 

Context switch overhead. Many real-world applications 
are highly dependent on system services provided by the OS. 
SGX does not allow in-place execution of system calls in 

the enclave. Instead, system services can be called through 
the ocall interface pre-defined. When enclave codes require a 
system service, an ocall operation will be performed, and the 
syscall parameters will be copied from enclave private memory 
to non-enclave memory. Once the syscall is done, an ecall 

will be executed to re-enter the enclave. However, in some 
system calls, if the parameters include pointers and nested 
data structures, the user program may need to implement deep 
copy operations by itself. Although current newer versions 
of the SGX SDK already have support for deep copies, the 
performance overhead incurred is similar. As ocalls and ecalls 
need to switch back and forth between the enclave-OS, an 
amount of data copies and runtime software operations (e.g., 
save and restore enclave and non-enclave contexts) will cause 
significant impacts on the overall system performance. 1bis 
issue may be mitigated to some extent by [29, 30]. 

VI. CONCLUSION 

Intel SGX offers a hardware primitive for construction 
of isolated execution environments. However, due to certain 
design constraints in SGX, the problem of SGX compat­
ibility/usability arises. This paper first recalls five design 
constraints of SGX and systematically analyzes the root causes 
of incompatibility (or poor usability) with binary software. 
Subsequently, we review three solutions to address SGX 

compatibility, and analyze their pros and cons from the per­

spectives of security, performance, and flexibility. Finally, we 
present some lessons learned from prior SGX studies. 
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