
20
23

 IE
EE

 3
2n

d
As

ia
n

Te
st

 S
ym

po
siu

m
 (A

TS
) |

 9
79

-8
-3

50
3-

03
10

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AT

S5
95

01
.2

02
3.

10
31

79
65

A Comparison Study of the Compatibility

Approaches for SGX Enclaves

Jinhua Cuit, Yiyun Ymt, Zhiping Cai* and Jiliang Zhangt§*
tcollege of Semiconductors (College of Integrated Circuits), Hunan University

§Innovation Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan University
teonege of Computer, National University of Defense Technology

Abstmct---Confidential computing technologies, such as tbat
enabled by Intel SGX (Software Guard eXtensions), have been
widely deployed in various commercial cloud platforms . Specifi­
cally, SGX uses hardware-isolated compartments named enclaves
to shield user applications from Operating Systems (OSes)
and hypervison, thus providing confidentiality and integrity
guarantees for code and data. However, some crucial problems
are not fuUy analyzed yet, especially for the compatlbllity with
binary applications. This work first delivers an overview of Intel
SGX and reviews its five design constraints tbat may affect
compatibility. Subsequently, we revisit three distinct compatibility
solutions from the internals and analyze their impact on security,
performance, and flexl.bllity. At last, we lay out some fundamental
lessons learned from prior SGX studies.

lndu Thnm-TEEs, Intel SGX enclaves, compatibility ap­
proaches, confidential computing, design constraints

I. INTRODUCTION

Confidential computing can leverage hardware-based
Trusted Execution Environments (TEEs) to protect users' sen­
sitive data and code. Unlike traditional encryption protection
for both data at rest and in transit, TEEs are primarily used to
protect data in use [1-4]. A prominent example is Intel SGX,
which introduces a specialized hardware security extension to
enable an isolated execution environment called enclave. SGX
is able to offer guarantees of confidentiality and integrity of
enclave-bounded data and code [5-8]. The original design
of SGX provides a strong security threat model, where it
distrusts cloud service providers, third-party services, system
administrators, and other individuals who have access to the
physical machine. Instead, it only trusts the Intel CPU's SGX
implementation and the user's own program code. Compared
to the traditional OS, the attack surface has been significantly
reduced in the SGX trust model. As a relatively mature
commercial product, SGX technology has been deployed in
some cloud servers, such as Microsoft Azure [2] and Al­
ibaba Cloud ECS [4]. Security-sensitive scenarios shielded by

* Jiliang Zhang is the corresponding author.
This work was funded by the National Key Research and Development

Program of China under Grant No. 2022YFB3903800, the National Natural
Science Foundation of China under Grant No. U20A20202, No.62122023,
the Sciem:e and Technology Innovation Program of Hunan Province under
Grant No. 2021RC4019, the Natural Science Foundation of Hunan Province
(Grant No. 20231140160), the Natural Science Foundation of Changsha City
(Grant No. kq2208212), the Fundamental Research Funds for the Central
UniveJSiti.es, and the National Key Research and Development Program of
China (Grant No. 2022YFF1203001).

SGX include finance, healthcare, intellectual property, multi­
party confidential data sharing, confidential machine learning,
blockchain, and so on.

Although Intel SGX provides powerful hardware-level se­
curity protection for data in use, some constraints imposed
by SGX design result in varying degrees of impact on the
compatibility with unmodified applications. The specific issues
can be summarized as follows: (1) Binary compatibility: due
to the design constraints of Intel SGX, most SGX runtime
frameworks [9-21], particularly including the official Intel
SGX SDK, only provide source-level compatibility rather
than binary-level compatibility. This leads to problems in
usability and compatibility between SGX and unmodified or
legacy applications, which is an open issue in SGX-enforced
confidential computing. (2) Language runtime compatibility:
since SGX only supports applications compiled with C/C++
by default, language runtimes (e.g., Python and R) cannot run
directly in the SGX enclave. The compatibility between the
language runtime and SGX enclave has become an indepen­
dent research focus, as indicated by prior studies [22-25].

This paper first reviews five important design constraints of
Intel SGX and systematically analyzes the compatibility im­
pacts caused by each constraint. Then, it provides an overview
of existing SGX compatibility solutions and discusses their
advantages and disadvantages. Finally, it concludes with some
empirical lessons from Intel SGX studies.

II. OVERVIEW OF INTEL SGX

Intel SGX [5-8] is a security extension of Intel CPU
architecture, which introduces a set of new instruction codes
and memory isolation mechanisms for protection of data in
use. SGX allows userland applications to create a protected
area in an isolated address space, known as an enclave.
In this enclave, both user code and data are offered for
guarantees of confidentiality and integrity, effectively prevent­
ing malicious privileged software from tampering with them.
The implementation of SGX requires coordination among the
processor, memory management components, BIOS, drivers,
runtime software, and other software and hardware compo­
nents. Each enclave memory region, also called Processor
Reserved Memory (PRM), is a contiguous physical memory
block pre-reserved from the entire Dynamic Random Access

Authorized licensed use limited to: Dalian University of Technology. Downloaded on November 27,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

Memory (DRAM). I� size is typically configurable through
the BIOS (e.g., a default size of 128MB).

In the trust model of Intel SGX, only the SGX hardware and
enclave software are considered trusted. All other software,
including privileged software such as the OS, is considered
untrusted. Enclave software may rely on services provided
by non-enclave software, such as system calls and signal
handling. SGX hardware provides two interfaces, synchronous
and asynchronous, for switching between the OS and the
enclave. In addition, SGX hardware restricts access to en­
clave memory (i.e., private memory) from untrusted software.
However, enclave software can read from or write to memory
regions outside the enclave boundary (i.e., public memory).

Intel SGX SDK officially provides a set of function calls for
SGX applications through ecalls and ocalls. Specifically, the
ecall is used to enter an enclave and invoke trusted functions,
while the ocall is used to exit the enclave and invoke untrusted
functions [6]. Therefore, a user application is able to call a
ecall to execute code in the enclave and receive the return
values. Likewise, the enclave can invoke a ocall to exit the
enclave to use functions/services in the host process.

Ill. SGX DESIGN CONSTRAINTS AND THE IMPACTS

SGX offers confidentiality and integrity protection for code
and data in the enclave. All enclave memory is private and
can only be accessed when executing in enclave mode. Data
exchanged with the external world (e.g., the host application
or the OS) must reside in unprotected public memory since
external programs cannot access the enclave's private memory.
During runtime, execution control can only synchronously
enter the enclave through ecalls and exit the enclave through
ocalls. The two interfaces are the primary means of imple­
menting system calls (syscalls). Any exception in the enclave
results in asynchronous entry-exit points, after which SGX
relocates the current control flow to pre-defined points in the
program. Additionally, if enclave execution is asynchronously
interrupted, SGX saves the enclave execution context and
restores it at a later entry point [5, 6].

A. Design constraints

Intel SGX enforces strict isolation strategies at certain
interaction points between the OS and the enclave code to
ensure enclave security. This subsection recalls five constraints
(ClrvC5) imposed by SGX hardware design [15] in Table I.

B. Impacts on (in)compatibility

The aforementioned constraints are an important basis for
understanding the incompatibility between SGX enclaves and
the functionalities of untrusted software. The ct c5 affect
SGXl-based runtime frameworks [6, 7] while ClrvC4 also
apply to the latest version of SGX2. The C2 is relaxed much
as Intel introduces a new dynamic memory allocation feature
in SGX2, but this feature cannot address other constraints.

Ct. Spatial partitioning. Cl ensures that any data located
in the enclave's private memory, such as syscall parameters,
cannot be accessed by the OS or host processes. To do this, the

enclave explicitly manages copies of data in both public and
private memory to enable external access while protecting it
from malicious modifications. This operation is called a two­

copy mechanism [15]. However, Cl disrupts functionalities
such as syscalls, signal handling, futex for locking, and intro­
duces non-transparency issues (e.g., synchronizing two data
copies) and security risks (e.g., TOCTOU attacks [26]).

C2. Static partitioning. Applications may require dynamic
adjustments to the size or permissions of enclave memory.
These operations happen when dynamically loading library
files (e.g., dlopen) or data files (e.g., mmap), executing dy­
namically generated code, creating a read-only all-zero data
segment (e.g., bss), or implementing software-based isolation
protection. However, constraint C2 is highly incompatible with
these functionalities. To maintain compatibility with C2, appli­
cations need to carefully modify the corresponding semantics.
This may involve weakening security protection (shifting from
read or execute to read and execute), adopting a two-copy
mechanism, or relying on alternative forms of isolation (e.g.,
software instrumentation).

C3. Non-shared enclave memory. SGX lacks a mechanism
for sharing private memory across enclaves. This limitation
poses compatibility issues with synchronization primitives,
such as locks and shared memory, especially in cases where
there is no trusted OS to facilitate synchronization. Maintain­
ing two copies of shared locks may disrupt their intended
semantics and create a challenge in synchronizing the data
state between the two copies without relying on another trusted
synchronization primitive.

C4. One-to-one enclave memory mapping. When an ap­
plication needs to create a new virtual address mapping, such
as using malloc, the OS assists in establishing the mapping.
Typically, an application can ask the OS to map the same
physical page to several different virtual addresses with either
same or varying permissions. For example, within a process's
memory space, the same file can be mapped at two different
locations as read-only. However, on SGX, a single PA cannot
be mapped to multiple enclave VAs. Any attempt to do so will
trigger an exception of SGX memory protection.

CS. Fixed enclave entry point. SGX enforces that enclave
entry and resumption only occur from pre-specified and stati­
cally identifiable entry points, which are determined at compile
time. However, in unmodified enclave applications, unexpected
entry points may occur in the event of exception instructions
or illegal memory accesses. When re-entering the enclave,
SGX requires that the program's execution context matches
that at the time of exit This differs from typical program
behavior, where programs can be resumed in a signal handler
with correct execution context set up by the OS. In the context
of SGX enclaves, however, the program must be resumed at
the exact instruction with the same enclave context where it
exited. Otherwise, another exception is triggered.

IV. COMPATIBILITY APPROACHES FOR SGX ENCLAVES

In the aforementioned section, the five design constraints
outlined affect the compatibility or usability of SGX enclaves.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on November 27,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

Host OS

Glibc

Library OS

App code

Libraries Libraries

Libc

App code

Host OS

Shim

TABLE I
CONSTRAINTS IMPOSED BY SGX DESIGN

DesigD constraint
C 1 Spatial partitioning

Description .
SGX reserves a dedicated memory region as private for the enclave and the rest as public.
Enclave must statically specify the spatial partitioning. C2 Static partitioning

C3 Non-shared enclave memory An enclave has no support to share private memory across enclaves.
C4 One-to-one enclave memory mapping
C5 Fixed enclave entry point

The virtual addresses (VA) for enclaves is mapped one-to-one with the physical address (PA).
An enclave is allowed to resume execution only from its last exit point.

•............................•

(a) (b)

Fig. 1. Compatibility approaches for SGX enclaves. (a) Library OS-based
design; (b) Library wrapper-based design

That means binary applications cannot be executed directly
inside the enclave without modification or recompilation to
the source code or binary file. To address the compatibility
issue, researchers have proposed some approaches for run­
ning (unmodified or partially modified) applications within
SGX enclaves. Among them, a prominent way is to have
the application use prescribed program-level interfaces or
APis. The choice of interfaces varies, including specific pro­
gramming languages [22-25], container interfaces [17], and
specific implementations of standard libc interfaces [16, 18],
among others. Figure 1 & 2 show three compatibility ap­
proaches, including library OS-based, library wrapper-based,
and instruction wrapper-based. Although these approaches can
enhance compatibility between SGX and applications, they
may cause performance and security concerns. Next, we will
discuss these compatibility-enhancing strategies individually
and analyze their advantages and disadvantages, as well as
their impact on performance, flexibility, and security.

A. Library OS-based Approach

The Library Operating System (i.e., libOS or library OS)
is a special library that emulates the OS features and API
interfaces relied upon by an application process. By porting
the entire library OS into the enclave, application binaries can
be executed directly in the same enclave. Since the binary
program depends on the library OS completely, developers
require relinking against specific versions of libraries (e.g.,
musl, libc, glibc). Then, the linked files are loaded into the
enclave and run. The implementation of library OS includes
rich functionalities such as those in a traditional OS, thus

avoiding enclave applications frequently entering and exiting
for the OS services. Frameworks of such library OS-based
design include Haven [21], Graphene-SGX [16], and SGX­
LKL [27].

Although, in this design (see Figure l(a)), the library OS
provides a user-space implementation for the majority of func­
tionalities originally offered by the OS kernel, some privileged
operations still need to be executed in the supervisor mode.
For instance, both enforcement of protection and isolation
to application code and page table switching are privileged
operations. Thus, the library OS requires a small privileged
software layer to help implement these operations. Since
the library OS incorporates most of the functionalities of a
traditional OS (e.g., file systems and network management),
the interface between the library OS and the software layer
is usually smaller than the system call layer exposed between
the OS and the application. For example, the Graphene-SGX
interface includes 38 different operations while Haven includes
only 24. When the library OS wants to execute certain special
instructions/operations, such as cpuid or getsec, it transfers
control flow to the privileged software layer to exit the enclave
and complete these operations with the assistance of the OS.

Advantages. The main advantage of the library OS-based
approach is a simpler OS-enclave interaction interface. This
is primarily attributed to the fact that the library OS itself
implements numerous functionalities of a conventional OS,
greatly simplifying the enclave interface. For example, the
library OS may implement a significant portion of the file
system in the enclave, allowing fine-grained control over read
and write operations when the control flow reaches the enclave
interface. For many system calls (e.g., fcntl), which require
interaction between user space and kernel space in a traditional
OS, the library OS running in the enclave does not require
cross-boundary operations or even touch the enclave interface.
These system calls can simply be mapped to read, write,
and modification operations on the file system-related data
structures in the library OS. The function calls also do not
modify any security-sensitive states of other applications and
do not require assistance from privileged system software.

The library OS-based approach has a small OS-enclave
interaction interface and gains better performance and
compatibility, because the library OS in the enclave in­
corporates the majority of functionalities of a traditional
OS relied on by any applications.

Disadvantages. An important drawback of this approach is
that the entire library OS needs to run in a single enclave.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on November 27,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

This means that the Trusted Computing Base (TCB) becomes
significantly large. For example, the TCB of Graphene-SGX
can be as high as "' 1.2MB. Consequently, the attack surface
of the entire enclave also increases, providing attackers with
more opportunities to exploit and compromise the isolated
execution environment. One typical example is a buffer over­
flow vulnerability in the library OS, which can be leveraged
to launch code-reuse attacks. Lack of flexibility is also one
of the main drawbacks of the library OS-based approach. As
mentioned in the literature of library OS-based prototypes, the
entire application runs in the enclave. However, application
developers likely put only a portion of the security-sensitive
code in the enclave, rather than the entire program code.

Another drawback is the need for complex engineering
efforts. Different enclave processes may need to communicate
with each other, which involves multiple layers of commu­
nication mechanisms across library OSes. This design makes
communication between enclaves more complicated. When­
ever there is inter-enclave communication, the transmitted data
needs to pass through the software layer of each library OS to
be processed. Since the two enclaves do not trust each other,
they cannot perform related operations as applications running
in the same library OS (meaning in the same enclave).

The library OS-based approach introduces a large TCB size
that likely reduces the trustworthiness guaranteed by SGX
hardware. Meanwhile, this design incurs high complexity
and low flexibility.

B. Library Wrapper-based Approach

The representative work of the library wrapper-based ap­
proach, such as Panoply [19], assumes that applications invoke
system services through library functions (e.g., the standard
C library or libc), as shown in Figure 1(b). 'JYpically, these
library files contain low-level system call functions and other
sensitive instruction operations that cannot be executed in the
enclave. Panoply provides a library wrapper-based interface,
allowing enclave applications to link against them. The type of
wrapper interface ensures that the library code is called from
outside the enclave, and the enclave interface is standard C

library functions.
Currently, Panoply is the only runtime system that utilizes

the library wrapper-based approach. In contrast to the library
OS-based approach, this design implements a set of exit

interfaces from the enclave, but adds few functionalities inside
the enclave. In Panoply, standard C library functions are
executed outside the enclave, and it provides a library wrapper­
based interface with which the enclaved application needs to
be linked. These wrapper functions wrap the data and transfer
it to the corresponding library function outside the enclave.

Advantages. Since the library function wrappers in the
enclave perform few operations for marshaling/unmarshaling
data, it effectively reduces the TCB of the enclave system.
Application developers can flexibly decide which security­
sensitive functions to be executed in the enclave. The task
of partitioning the application involves executing all enclave

code as a separate module and implementing inter-function
calls through cross-module execution. Creating the enclave
code for applications is straightforward, as it only requires
linking the function modules into the Panoply library function
wrappers.

The library wrapper-based approach involves a quite small
TCB size, which prioritizes security over binary compati­
bility. Meanwhile, this design brings high flexibility.

Disadvantages. The most obvious drawback of the library
wrapping approach is that the library function code executed
outside the enclave is untrusted and can be exploited by
attackers to compromise the confidentiality and integrity of the
enclave application (i.e., Iago-like attacks). Due to the large
and complex library wrapper interfaces, defending against
such attacks is difficult.

The standard C library contains thousands of function
interfaces and some non-standard data structures, which may
continuously vary (e.g., increase, modify, or delete). It is
found that some APis or data structures have been added
or removed in different versions of libraries [28]. Therefore,
SGX frameworks based on the library wrapper-based approach
(e.g., Panoply) need huge engineering efforts for adaptation to
different versions of library files.

In addition to the large wrapper interfaces, the Panoply
system also requires modifications to the target application
code to ensure that the corresponding function wrappers are
executed correctly. In other words, the application's calls to
functions in the library file must be adapted to call into the
Panoply library file. According to the statistical data by the
Panoply authors, approximately 1000 lines of code need to be
modified for the test applications mentioned in the paper.

The library wrapper-based approach contains large and
complex library wrapper interfaces, which could potentially
be exploited to launch lago-like attacks. Further, this design
involves huge porting efforts and manual modifications to
application source codes, making it less compatible with
SGX enclaves.

C. Instruction Wrapper-based Approach

The main purpose of the instruction wrapper-based approach
is to provide wrapper functions for low-level instructions that

are prohibited from execution in the enclave, such as cpuid,

rdtsc, syscall, etc. These wrapper structures contain security
rules that cross the enclave boundary to ensure the security
of data. This approach can provide encryption services when
data leaves the enclave, and perform decryption operations
when entering the enclave. In this design, the enclave interface
is a set of instruction wrapper-based interfaces used to inter­
cept special instructions prohibited by SGX. It then transfers
control and corresponding parameters to the outside of the
enclave for further handling. SCONE [17] is an SGX runtime

framework based on this approach, and Ratel [15] is another
example where all the instructions of an application binary can
be interposed in the enclave.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on November 27,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

Container

Shield

Musl

App code

Libraries

based approach

Host OS

Libc

DynamoRIO

App code

Libraries

·····························••

................................ •

(a) (b)

Fig. 2. Two types of instruction wrapper-based design

The instruction wrapper-based approach provides finer­
grained control over the enclave interface compared to the
library OS-based and library wrapper-based approaches. Fig­
ure 2 illustrates two different design choices. In essence, not
only can this approach intercept special instructions, but it can
transparently monitor every instruction of the target program,
such as Ratel (as shown in Figure 2(b)), to perform security
checks, dynamic translation, profiling, etc. Compared to the
library wrapper-based approach, the instruction wrapper-based
occurs at a lower level of abstraction layer and is closer to the
enclave boundary, such as operations on register parameters
and enclave memory.

Advantages. Theoretically, the instruction wrapper-based
approach can support the execution of arbitrary binary pro­
grams inside SGX enclaves by replacing the instruction in­
vocation for out-enclave services with specified instruction
wrapper-based interfaces. Implementing wrapper interfaces
(e.g., wrapping instructions instead of giving a library call
interfaces) at a lower level means that these wrapper interfaces
work on a more stable interface. For example, the syscall
instruction is commonly used to implement various system
calls, and every instruction wrapper interface varies depending
on syscall parameters and types. Research [28] has demon­
strated that the Linux system call interface is more stable and
undergoes fewer changes across different kernel versions than
the glibc interface.

The instruction wrapper-based approach can offer higher
compatibility and low-level control capabilities. This design
brings high flexibility for implementing various in-line
security monitors for security, profilers for performance,
and other functionalities.

In this approach, the standard C library files that an applica­
tion relies on run inside the enclave, while they run outside the
enclave in the library wrapper-based approach. Therefore, the
TCB of the former is larger and heavier than that of the latter.
In addition, a thin layer of security checking programs can
be flexibly added to prevent !ago-like attacks from malicious
manipulation. In comparison, this approach requires little or
no intrusive modifications to the application, making it easily

adapt to SGX hardware enclaves. Importantly, controlling over
the target binary is easy to achieve, which can be used for
security introspection, monitoring, optimization, and so on.

Disadvantages. The primary overhead of the instruction
wrapper-based approach is the TCB, which is larger than
Panoply but much smaller than the library OS-based approach.
Additionally, the application may need to relink against new
instruction wrapper-based library files, such as those made
by SCONE (see Figure 2(a)). Ratel provides an instruction­
level dynamic translation engine in the enclave, which can
dynamically translate and execute every instruction of the
application binary. It replaces all instructions that are illegal
in SGX with an appropriate external call, which is handled
outside the enclave. Once done, it re-enters the enclave to
continue execution. During this process, Ratel does not require
dynamic or static link with any library files and enables the
unmodified application to run directly in the enclave.

The instruction wrapper-based approach contains a rela­
tively large TCB size. It may cause non-ignorable perfor­
mance overhead, because frequently fine-grained control
over the instruction of target binary requires plenty of extra
handling.

V. KEY LESSONS LEARNED FROM SGX STUDIES

We have learned several valuable lessons from studies
of Intel SGX, which involve aspects of performance and
compatibility/usability.

Shared enclave memory. As described in Section II, Intel
CPUs protect enclave memory from being accessed by all non­
enclave software (e.g., the OS, hypervisor) that are restricted
to only non-enclave memory regions. Enclave private memory
is even not allowed to be shared with other enclaves. This
memory isolation model enables strong security guarantees
for each SGX enclave. This is why Intel SGX does not
support shared memory by design across enclave boundaries.
To initialize an enclave, for example, system software re­
quires copying data from non-EPC pages to EPC pages to
load the target application into the newly created enclave.
Unfortunately, due to the lack of shared memory between
the enclave and non-enclave, this operation incurs significant
performance overhead. Another issue is that the OS- or host­
enclave interactions (e.g., read/write syscalls) involve shallow
or deep copies across enclave boundaries to exchange the
data of syscall parameters, thus causing additional overhead.
Furthermore, the absence of shared memory in SGX also leads
to sweeping incompatibility with legacy applications.

Spatial isolation model. The core idea behind Intel SGX
is to provide spatial memory isolation for enclaves from
the external world and other enclaves. Memory can either
be public or private, not both, on SGX-enabled systems.
From a security perspective, this design works well, but it is
inadequate for the program's expressiveness or usability. The
next generation of TEEs should offer flexibility to a program
where it can choose among strong security guarantees, better
performance, and rich expressiveness (or better compatibility).

Authorized licensed use limited to: Dalian University of Technology. Downloaded on November 27,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

For example, programs should be allowed to convert private
enclave pages to non-private ones on demand. Current SGX
implementations do not permit such operations throughout the
lifecycle of an enclave.

Context switch overhead. Many real-world applications
are highly dependent on system services provided by the OS.
SGX does not allow in-place execution of system calls in

the enclave. Instead, system services can be called through
the ocall interface pre-defined. When enclave codes require a
system service, an ocall operation will be performed, and the
syscall parameters will be copied from enclave private memory
to non-enclave memory. Once the syscall is done, an ecall

will be executed to re-enter the enclave. However, in some
system calls, if the parameters include pointers and nested
data structures, the user program may need to implement deep
copy operations by itself. Although current newer versions
of the SGX SDK already have support for deep copies, the
performance overhead incurred is similar. As ocalls and ecalls
need to switch back and forth between the enclave-OS, an
amount of data copies and runtime software operations (e.g.,
save and restore enclave and non-enclave contexts) will cause
significant impacts on the overall system performance. 1bis
issue may be mitigated to some extent by [29, 30].

VI. CONCLUSION

Intel SGX offers a hardware primitive for construction
of isolated execution environments. However, due to certain
design constraints in SGX, the problem of SGX compat­
ibility/usability arises. This paper first recalls five design
constraints of SGX and systematically analyzes the root causes
of incompatibility (or poor usability) with binary software.
Subsequently, we review three solutions to address SGX

compatibility, and analyze their pros and cons from the per­

spectives of security, performance, and flexibility. Finally, we
present some lessons learned from prior SGX studies.

REFERENCES

[1] "Confidential computing consortium-open source community,''
http://confidentialcomputing.io/, Accessed May, 2023.

[2] ''Microsoft azure confidential computing
with intel software guard extensions (intel
sgx)," https:/lwww.intel.com/content/www/uslen/
architecture-and- technology/software-guard-extensions/
microsoft-confidential-computing-sgx-video.html, Accessed
May, 2023.

[3] '"The critical need for confidential computing,''
https://www.intel.com/content/www/us/enlsecurity/
critical-need-for-confidential-computing-report.html, Accessed
May, 2023.

[4] "Alibaba cloud ecs bare metal instance supports intel
sgx," https:/lwww.alibabacloud..com/productlebm?spm=a2c5t.
10695662.1996646101.searchclickresult.539275ed2F9WWK,
Accessed May, 2023.

[5] F. McKeen, I. Alexandrovich, A. Berenzon , C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, "Innovative
instructions and software model for isolated execution," in
HASP (2013).

[6] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas, ''Intel® software guard exten-

sions (intel® sgx) support for dynamic memory management
inside an enclave,'' in HASP (2015).

[7] ''Intel software guard extensions sdk-documentation -
intel software,'' https://software.intel.com/en-us/sgx-sdk/
documentation, Accessed May, 2023.

[8] C. V and D. S, "Intel sgx explained,'' http://eprint.iacr.org/2016/
086, Accessed May, 2023.

[9] ·�pache teaclave: a univeilial secure computing platform," https:
/lteaclave.apache.orgl, Accessed May, 2023.

[10] "Edgeless rt: an sdk and a runtime for intel sgx,'' https://github.
com/edgelesssys/edgelessrt, Accessed May, 2023.

[11] "Enarx: an application deployment system enabling appli­
cations to runwithin tee,'' https://github.com/enarx/enarx/wikil
Enarx-Introduction, Accessed May, 2023.

[12] ·� novel container runtime for cloud-native confiden­
tial computing and enclave runtime ecosystem," https://
inclavare- containers.io/, Accessed May, 2023.

[13] "Veracruz: privacy-preserving collaborative compute,'' https://
github.com/veracruz-projectlveracruz , Accessed May, 2023.

[14] ·�sylo: an open and flexible framework for enclave applica­
tions," https://asylo.dev/, Accessed May, 2023.

[15] J. Cui, S. Shinde, S. Sen, P. Saxena, and P. Yuan, "Dynamic
binary translation for SGX enclaves,'' ACM Trans. Priv. Secur.,
vol. 25, no. 4, pp. 32:1-32:40, 2022.

[16] C. Tsai, D. E. Porter, and M. Vij, "Graphene-sgx: A practical
library OS for unmodified applications on SGX," in USENIX
ATC (2017).

[17] S. Arnautov, B. Thach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O'Keeffe, M. Stillwell,
D. Goltzsche, D. M. Eyeili, R. Kapitza, P. R. P ietzucb, and
C. Fetzer, "SCONE: secure linux containers with intel SGX,"
in OSDI (2016).

[18] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia,
and S. Yan, ''Occlum: Secure and efficient multitasking inside
a single enclave of intel SGX," in ASPWS (2020).

[19] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, ''Panoply: Low­
tcb linux applications with SGX enclaves," in NDSS (2017).

[20] "Open enclave sdk,'' https://openenclave.io/sdkl, 2022.
[21] A. Baumann , M. Peinado, and G. C. Hunt, "Shielding applica­

tions from an untrusted cloud with haven," in OSDI (2014).
[22] H. Wang, E. Bauman , V. Karande, Z. Lin, Y. Cheng, and

Y. Zhang, "Running language interpreters inside SGX: A
lightweight, legacy-compatible script code hardening approach,''
in AsiaCCS (2019).

[23] C. Tsai, J. Son, B. Jain, J. McAvey, R. A. P apa, and D. E. Porter,
"Civet: An efficient java partitioning framework for hardware
enclaves," in USENIX Security (2020).

[24] A. Ghosn, J. R. Larus, and E. Bugnion. "Secured routines:
Language-based construction of trusted execution environ­
ments,'' in USENIX ATC (2019).

[25] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza, "Acctee:
A webassembly-based two-way sandbox for trusted resource
accounting,'' in Middleware (2019).

[26] S. Checkoway and H. Shacham, ''Iago attacks: why the system
call API is a bad untrusted RPC interface," in ASPWS (2013).

[27] C. Priebe, D. Muthukumaran, 1. Lind, H. Zhu, S. Cui, V. A.
Sartakov, and P. R. Pietzuch, "SGX-LKL: securing the host OS
interface for trusted execution,'' CoRR, val. abs/1908.11143,
2019. [Online]. Available: http:l/arxiv.org/abs/1908.11143

[28] K. Shanker, A. Joseph, and V. Ganapathy, "An evaluation of
methods to port legacy code to SGX enclaves,'' in ESEC/FSE
(2020).

[29] 0. Weisse, V. Bertacco, and T. M. Austin, "Regaining lost cycles
with hotcalls: A fast interface for SGX secure enclaves," in ISCA

(2017) .
[30] M. Orenbach, P. Ufshits, M. Minkin. and M. Silbeilitein, ''Eleos:

Exitless OS services for SGX enclaves,'' in EuroSy$ (2017).

Authorized licensed use limited to: Dalian University of Technology. Downloaded on November 27,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

